13 Term Henderson Weighted Moving Average
Weighted Moving Averages: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Durchschnitts (MA). Die meisten technischen Analysten glauben, dass Preis-Aktion. Der Eröffnungs - oder Schlussaktienkurs, reicht nicht aus, um davon abhängen zu können, ob Kauf - oder Verkaufssignale der MAs-Crossover-Aktion richtig vorhergesagt werden. Zur Lösung dieses Problems weisen die Analysten den jüngsten Preisdaten nun mehr Gewicht zu, indem sie den exponentiell geglätteten gleitenden Durchschnitt (EMA) verwenden. (Erfahren Sie mehr bei der Exploration der exponentiell gewogenen gleitenden Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tag nehmen und multiplizieren Sie diese Zahl mit 10, der neunte Tag um neun, der achte Tag um acht und so weiter auf die erste der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren dividieren. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieses Kennzeichen wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Themen lesen Sie in Simple Moving Averages machen Trends Stand Out.) Viele Techniker sind fest Anhänger in der exponentiell geglättet gleitenden Durchschnitt (EMA). Dieser Indikator wurde auf so viele verschiedene Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwirrt. Vielleicht die beste Erklärung kommt von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht von der New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt behebt beide Probleme mit dem einfachen gleitenden Durchschnitt verbunden. Erstens weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Doch während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in seiner Berechnung alle Daten in der Lebensdauer des Instruments. Zusätzlich ist der Benutzer in der Lage, die Gewichtung anzupassen, um ein größeres oder geringeres Gewicht zu dem letzten Tagespreis zu ergeben, der zu einem Prozentsatz des vorherigen Tageswertes addiert wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagespreis ein Gewicht von 10 (.10) zugewiesen werden, das zu dem vorherigen Tagegewicht von 90 (.90) addiert wird. Das ergibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem die letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete gleitende Durchschnittswerte Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im Aug. 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über eine Neun-Tage-Zeitraum, hat endgültige Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterbrach. Der zweite schwarze Pfeil zeigt ein anderes Bein, das die Techniker tatsächlich erwartet hatten. Der Nasdaq konnte nicht genug Volumen und Interesse von den Kleinanlegern erzeugen, um die 3.000 Marke zu brechen. Danach tauchte es wieder zu Boden, um 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index bei 1.961,46, und Techniker begannen zu sehen, institutionelle Fondsmanager ab, um einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen abholen. 6.4 X-12-ARIMA-Zerlegung Eine der populärsten Methoden zur Zerlegung von vierteljährlichen und monatlichen Daten ist X-12-ARIMA, die ihren eigenen Markt hat Ursprünge in Methoden, die von der US Bureau of the Census entwickelt. Es ist jetzt weit von dem Büro und Regierungsstellen auf der ganzen Welt verwendet. Frühere Versionen der Methode enthalten X-11 und X-11-ARIMA. Eine X-13-ARIMA-Methode ist derzeit in Entwicklung am US Bureau of the Census. Die X-12-ARIMA Methode basiert auf klassischer Zersetzung, aber mit vielen zusätzlichen Schritten und Funktionen, um die Nachteile der klassischen Zersetzung zu überwinden, die im vorherigen Abschnitt diskutiert wurden. Insbesondere ist die Trendschätzung für alle Beobachtungen einschließlich der Endpunkte verfügbar, und die saisonale Komponente kann sich im Laufe der Zeit langsam verändern. Es ist auch relativ robust gegenüber gelegentlichen ungewöhnlichen Beobachtungen. X-12-ARIMA behandelt sowohl additive als auch multiplikative Zersetzung, erlaubt aber nur vierteljährliche und monatliche Daten. Der ARIMA-Teil von X-12-ARIMA bezieht sich auf die Verwendung eines ARIMA-Modells (siehe Kapitel 7), das Prognosen der Serie sowohl zeitlich als auch zeitlich rückwärts liefert. Wenn dann ein gleitender Durchschnitt angewendet wird, um eine Schätzung des Taktzyklus zu erhalten, gibt es keinen Verlust von Beobachtungen am Anfang und Ende der Reihe. Der Algorithmus beginnt in ähnlicher Weise wie die klassische Zersetzung, und dann werden die Komponenten durch mehrere Iterationen verfeinert. Die folgende Skizze des Verfahrens beschreibt eine multiplikative Zerlegung, die auf monatliche Daten angewendet wird. Ähnliche Algorithmen werden für additive Zerlegungen und vierteljährliche Daten verwendet. Berechnen Sie einen 2 × 12 gleitenden Durchschnitt, der auf die ursprünglichen Daten angewendet wird, um eine grobe Abschätzung des Trendzyklus Hut t für alle Perioden zu erhalten. Berechnen Sie die Verhältnisse der Daten zum Trend (genannt zentrierte Verhältnisse): yt / hat t. Wenden Sie separate 3times3 MAs zu jedem Monat der zentrierten Verhältnisse an, um eine grobe Schätzung des Hutes t zu bilden. Teilen Sie die zentrierten Verhältnisse durch Hut t, um eine Schätzung des Restes zu erhalten, hat t. Reduzieren Sie die Extremwerte von Et, um modifizierte Hüte zu erhalten. Multiplizieren Sie modifizierten Hut t durch Hut t, um modifizierte zentrierte Verhältnisse zu erhalten. Wiederholen Sie Schritt 3, um überarbeitete Hut t zu erhalten. Teilen Sie die ursprünglichen Daten durch die neue Schätzung von Hut t, um die vorläufige saisonbereinigte Reihe yt / ht zu geben. Der Trendzyklus wird durch die Anwendung eines gewichteten Henderson MA auf die vorläufigen saisonbereinigten Werte geschätzt. (Je größer die Zufälligkeit ist, desto länger ist die Länge des gleitenden Durchschnitts.) Für die Monatsreihe wird entweder ein 9-, 13- oder 23-facher Henderson-Gleitender Durchschnitt verwendet. Wiederholen Sie Schritt 2. Neue Verhältnisse werden erhalten, indem die ursprünglichen Daten durch die neue Schätzung von Hut t dividiert werden. Wiederholen Sie die Schritte 36 unter Verwendung der neuen Verhältnisse und Anwenden eines 3 × 5 MA anstelle eines 3 × 3 MA. Wiederholen Sie Schritt 7 aber mit einem 3times5 MA anstelle einer 3times3 MA. Wiederholen Sie Schritt 8. Die Restkomponente wird durch Dividieren der saisonbereinigten Daten von Schritt 13 durch den in Schritt 9 erhaltenen Trendzyklus erhalten. Extremwerte der Restkomponente werden wie in Schritt 5 ersetzt. Eine Reihe modifizierter Daten wird durch Multiplizieren erhalten Die Trend-Zyklus, saisonale Komponente und angepasst Restbestandteil zusammen. Der gesamte Prozess wird zwei Mal wiederholt, wobei die Daten verwendet werden, die in dem Schritt 16 jedes Mal erhalten werden. Bei der abschließenden Iteration werden die 3 × 5 MA der Schritte 11 und 12 durch einen 3 × 3, 3 × 5 oder 3 × 9 gleitenden Durchschnitt ersetzt, abhängig von der Variabilität der Daten. X-12-ARIMA hat auch einige anspruchsvolle Methoden, um mit dem Handelstag Variation, Urlaub Effekte und die Auswirkungen der bekannten Prädiktoren, die hier nicht behandelt werden. Eine vollständige Diskussion der Methode ist verfügbar in Ladiray und Quenneville (2001). Es gibt derzeit kein R-Paket für X-12-ARIMA-Zerlegung. Allerdings ist freie Software, die die Methode implementiert ist, von der US Census Bureau und ein R-Schnittstelle, um diese Software von der x12-Paket zur Verfügung gestellt. Zeitreihenanalyse: Der Prozess der saisonalen Anpassung Was sind die beiden wichtigsten Philosophien der saisonalen Anpassung Was ist ein Filter Was ist der Endpunkt Problem Wie entscheiden wir, welche Filter zu verwenden Was ist eine Verstärkungsfunktion Was ist eine Phasenverschiebung Was sind Henderson gleitende Durchschnitte Wie gehen wir mit dem Endpunkt Problem umgehen Was sind saisonale gleitende Durchschnitte Warum werden Trendschätzungen überarbeitet Wie Sind viel Daten erforderlich, um annehmbare saisonbereinigte Schätzungen zu erzielen. ERWEITERT Wie die beiden saisonalen Anpassungsphilosophien vergleichen, WAS DIE ZWEI HAUPTSPHILOSOPHIEN SEASONALER EINSTELLUNG Die beiden Hauptphilosophien für die saisonale Anpassung sind die modellbasierte Methode und die Filtermethode. Filterbasierte Methoden Diese Methode wendet einen Satz von festen Filtern (gleitende Mittelwerte) an, um die Zeitreihen in eine Trend-, Saison - und unregelmäßige Komponente zu zerlegen. Die zugrunde liegende Vorstellung besteht darin, dass die Wirtschaftsdaten aus einer Reihe von Zyklen zusammengesetzt sind, darunter die Konjunkturzyklen (der Trend), saisonale Zyklen (Saisonalität) und Lärm (die irreguläre Komponente). Ein Filter entfernt im Wesentlichen die Stärke bestimmter Zyklen aus den Eingangsdaten. Um eine saisonbereinigte Reihe von monatlich gesammelten Daten zu erzeugen, müssen Ereignisse, die alle 12, 6, 4, 3, 2.4 und 2 Monate auftreten, entfernt werden. Diese entsprechen saisonalen Frequenzen von 1, 2, 3, 4, 5 und 6 Zyklen pro Jahr. Die längeren nicht-saisonalen Zyklen gelten als Teil des Trends und die kürzeren nicht-saisonalen Zyklen bilden die unregelmäßigen. Jedoch kann die Grenze zwischen dem Trend und den irregulären Zyklen mit der Länge des Filters variieren, der verwendet wird, um den Trend zu erhalten. In ABS saisonale Anpassung sind Zyklen, die erheblich zur Tendenz beitragen, in der Regel größer als etwa 8 Monate für monatliche Serien und 4 Quartalen für vierteljährliche Serien. Der Trend, saisonale und irreguläre Komponenten brauchen keine expliziten individuellen Modelle. Die unregelmäßige Komponente ist definiert als das, was nach dem Trend bleibt und saisonale Komponenten wurden durch Filter entfernt. Irregulars zeigen keine weißen Rauscheigenschaften. Filterbasierte Methoden werden oft als X11-Stilmethoden bezeichnet. Dazu gehören X11 (entwickelt von U. S. Census Bureau), X11ARIMA (von Statistics Canada entwickelt), X12ARIMA (entwickelt von U. S. Census Bureau), STL, SABL und SEASABS (das von der ABS verwendete Paket). Computational Unterschiede zwischen verschiedenen Methoden in X11 Familie sind vor allem das Ergebnis der verschiedenen Techniken an den Enden der Zeitreihen verwendet. Beispielsweise verwenden einige Verfahren asymmetrische Filter an den Enden, während andere Verfahren die Zeitreihe extrapolieren und symmetrische Filter auf die erweiterte Serie anwenden. Modellbasierte Methoden Dieser Ansatz erfordert, dass Trend, saisonale und unregelmäßige Komponenten der Zeitreihe separat modelliert werden. Es geht davon aus, dass die unregelmäßige Komponente 8220weißes Rauschen8221 ist - das heißt, alle Zykluslängen sind gleich dargestellt. Die Unregelmäßigen haben Null-Mittelwert und eine konstante Varianz. Die saisonale Komponente hat ein eigenes Rauschen. Zwei weit verbreitete Softwarepakete, die modellbasierte Methoden anwenden, sind STAMP und SEATS / TRAMO (die von der Bank von Spanien entwickelt wurden.) Hauptrechnungsunterschiede zwischen den verschiedenen modellbasierten Methoden sind in der Regel auf Modellspezifikationen zurückzuführen. Andere Methoden verlangen, dass die ursprüngliche Zeitreihe zuerst modelliert wird und die Komponentenmodelle daraus zersetzt werden. Für einen Vergleich der beiden Philosophien auf einer fortgeschritteneren Ebene, siehe Wie können die beiden saisonalen Anpassung Philosophien vergleichen WAS IST EIN FILTER Filter verwendet werden können Um eine Zeitreihe in eine Trend-, eine saisonale und eine unregelmäßige Komponente zu zerlegen Die gleitenden Mittelwerte sind eine Art von Filter, die aufeinanderfolgend eine Verschiebungszeitspanne von Daten schätzen, um eine geglättete Schätzung einer Zeitreihe zu erzeugen Wurde durch das Ausführen einer Eingangsserie durch ein Verfahren abgeleitet, das bestimmte Zyklen herausfiltert. Folglich wird ein gleitender Durchschnitt oft als ein Filter bezeichnet. Das grundlegende Verfahren beinhaltet das Definieren eines Satzes von Gewichten der Länge m 1 m 2 1 als: Anmerkung: Ein symmetrischer Satz von Gewichten hat m 1 m 2 und wjw - j. Ein gefilterter Wert zum Zeitpunkt t kann berechnet werden, indem Y t den Wert beschreibt Der Zeitreihe zum Zeitpunkt t. Betrachten Sie zum Beispiel die folgenden Reihen: Mit einem einfachen 3-Term-Symmetriefilter (dh m 1 m 2 1 und allen Gewichten 1/3) wird der erste Term der geglätteten Reihe durch Anwenden der Gewichte auf die ersten drei Terme erhalten Die ursprüngliche Reihe: Der zweite geglättete Wert wird durch Anwendung der Gewichte auf die zweiten, dritten und vierten Begriffe in der ursprünglichen Serie: WAS IST DAS ENDPUNKT-PROBLEM Überdenkt die Serie: Diese Reihe enthält 8 Begriffe. Jedoch enthält die geglättete Reihe, die durch Anwenden eines symmetrischen Filters auf die ursprünglichen Daten erhalten wird, nur 6 Ausdrücke: Das liegt daran, daß an den Enden der Reihe nicht genügend Daten vorhanden sind, um ein symmetrisches Filter anzuwenden. Der erste Term der geglätteten Reihe ist ein gewichteter Durchschnitt von drei Terme, der auf den zweiten Term der ursprünglichen Reihe zentriert ist. Ein gewichteter Mittelwert, der auf den ersten Term der ursprünglichen Reihe zentriert ist, kann nicht als Daten erhalten werden, bevor dieser Punkt nicht verfügbar ist. Ebenso ist es nicht möglich, einen gewichteten Mittelwert zu berechnen, der auf den letzten Term der Reihe zentriert ist, da keine Daten nach diesem Punkt vorliegen. Aus diesem Grund können symmetrische Filter nicht an jedem Ende einer Serie verwendet werden. Dies wird als Endpunktproblem bezeichnet. Zeitreihenanalytiker können asymmetrische Filter verwenden, um geglättete Schätzungen in diesen Regionen zu erzeugen. In diesem Fall wird der geglättete Wert 8216off centre8217 berechnet, wobei der Durchschnitt unter Verwendung von mehr Daten von einer Seite des Punktes als dem anderen gemäß dem, was verfügbar ist, bestimmt wird. Alternativ können Modellierungstechniken verwendet werden, um die Zeitreihen zu extrapolieren und dann symmetrische Filter auf die erweiterte Serie aufzubringen. WIE WIR ENTFERNEN, WELCHES FILTER ZU BENUTZEN Der Zeitreihenanalytiker wählt einen geeigneten Filter, der auf seinen Eigenschaften basiert, wie z. B. welche Zyklen der Filter entfernt, wenn er angewendet wird. Die Eigenschaften eines Filters können mit einer Verstärkungsfunktion untersucht werden. Verstärkungsfunktionen werden verwendet, um die Wirkung eines Filters bei einer gegebenen Frequenz auf die Amplitude eines Zyklus für eine bestimmte Zeitreihe zu untersuchen. Für weitere Informationen über die Mathematik, die mit Verstärkungsfunktionen verknüpft ist, können Sie die Time Series Kursnotizen, eine Einführung in die Zeitreihenanalyse des Zeitreihenanalyseabschnitts des ABS, herunterladen (siehe Abschnitt 4.4). Das folgende Diagramm ist die Verstärkungsfunktion für das symmetrische 3-Term-Filter, das wir früher untersucht haben. Abbildung 1: Verstärkungsfunktion für symmetrische 3-Term-Filter Die horizontale Achse stellt die Länge eines Eingangszyklus in Bezug auf die Periode zwischen den Beobachtungspunkten in der ursprünglichen Zeitreihe dar. So ist ein Eingabezyklus der Länge 2 in 2 Perioden abgeschlossen, was 2 Monate für eine monatliche Serie und 2 Quartale für eine vierteljährliche Serie entspricht. Die vertikale Achse zeigt die Amplitude des Ausgabezyklus relativ zu einem Eingangszyklus. Dieser Filter reduziert die Festigkeit von 3 Periodenzyklen auf Null. Das heißt, sie entfernt vollständig Zyklen von etwa dieser Länge. Dies bedeutet, dass für eine Zeitreihe, in der Daten monatlich gesammelt werden, alle saisonalen Effekte, die vierteljährlich auftreten, durch Anwendung dieses Filters auf die ursprüngliche Serie eliminiert werden. Eine Phasenverschiebung ist die Zeitverschiebung zwischen dem gefilterten Zyklus und dem ungefilterten Zyklus. Eine positive Phasenverschiebung bedeutet, dass der gefilterte Zyklus rückwärts verschoben wird und eine negative Phasenverschiebung zeitlich verschoben wird. Eine Phasenverschiebung tritt auf, wenn das Timing der Wendepunkte verzerrt ist, zum Beispiel wenn der gleitende Durchschnitt von den asymmetrischen Filtern außermittig platziert wird. Das heißt, sie werden entweder früher oder später in der gefilterten Serie auftreten als im Original. Ungerade symmetrische Bewegungsdurchschnitte (wie sie vom ABS verwendet werden), bei denen das Ergebnis mittig platziert wird, bewirken keine zeitliche Phasenverschiebung. Es ist wichtig, dass Filter, die verwendet werden, um den Trend abzuleiten, die Zeitphase und somit den Zeitpunkt jedes Wendepunktes beizubehalten. Die 2 und 3 zeigen die Effekte der Anwendung eines 2 × 12 symmetrischen gleitenden Mittelwertes, der außerhalb der Mitte liegt. Die kontinuierlichen Kurven repräsentieren die Anfangszyklen und die unterbrochenen Kurven repräsentieren die Ausgangszyklen nach dem Anlegen des gleitenden Durchschnittsfilters. Abbildung 2: 24-Monate-Zyklus, Phase -5,5 Monate Amplitude 63 Abbildung 3: 8-Monatszyklus, Phase -1,5 Monate Amplitude 22 WAS SIND HENDERSON BEWEGENDE AVERAGEN Henderson-Bewegungsdurchschnitte sind Filter, die von Robert Henderson 1916 für den Einsatz in versicherungsmathematischen Anwendungen abgeleitet wurden. Sie sind Trendfilter, die üblicherweise in der Zeitreihenanalyse verwendet werden, um saisonbereinigte Schätzungen zu glätten, um eine Trendschätzung zu erzeugen. Sie werden bevorzugt einfacheren gleitenden Durchschnitten verwendet, da sie Polynome bis zu Grad 3 reproduzieren können, wodurch Trendkurvenpunkte erfasst werden. Das ABS verwendet Henderson gleitende Mittelwerte, um Trendschätzungen aus einer saisonbereinigten Serie zu erzeugen. Die von der ABS veröffentlichten Trendschätzungen werden typischerweise unter Verwendung eines 13-term-Henderson-Filters für monatliche Serien und eines 7-term-Henderson-Filters für vierteljährliche Serien abgeleitet. Henderson-Filter können entweder symmetrisch oder asymmetrisch sein. Symmetrische Bewegungsdurchschnitte können an Punkten angewandt werden, die ausreichend weit entfernt von den Enden einer Zeitreihe liegen. In diesem Fall wird der geglättete Wert für einen gegebenen Punkt in der Zeitreihe aus einer gleichen Anzahl von Werten auf beiden Seiten des Datenpunkts berechnet. Um die Gewichte zu erhalten, wird ein Kompromiss zwischen den beiden Merkmalen, die allgemein von einer Trendreihe erwartet werden, erreicht. Dies ist, dass der Trend in der Lage sein, eine breite Palette von Krümmungen darstellen und dass es auch so glatt wie möglich sein sollte. Zur mathematischen Ableitung der Gewichte siehe Abschnitt 5.3 der Zeitreihen-Lehrveranstaltungen. Die von der ABS-Website heruntergeladen werden können. Die Gewichtungsmuster für einen Bereich symmetrischer Henderson-Bewegungsdurchschnitte sind in der folgenden Tabelle angegeben: Symmetrisches Gewichtungsmuster für Henderson Moving Average Im allgemeinen gilt, je länger der Trendfilter ist, desto glatter der resultierende Trend, wie sich aus einem Vergleich der Verstärkungsfunktionen ergibt über. Ein 5-term-Henderson reduziert Zyklen von etwa 2,4 Perioden oder weniger um mindestens 80, während ein 23-Term-Henderson reduziert Zyklen von etwa 8 Perioden oder weniger um mindestens 90. In der Tat ein 23-Term-Henderson-Filter entfernt vollständig Zyklen von weniger als 4 Perioden . Henderson bewegte Durchschnitte dämpfen auch die Jahreszeitzyklen in unterschiedlichen Graden. Jedoch zeigen die Verstärkungsfunktionen in den 4 - 8, dass die jährlichen Zyklen in den Monats - und Quartalsreihen nicht signifikant genug gedämpft werden, um die Anwendung eines Henderson-Filters direkt auf ursprüngliche Schätzungen zu rechtfertigen. Aus diesem Grund werden sie nur auf eine saisonbereinigte Reihe angewendet, wo die kalenderbedingten Effekte bereits mit speziell entwickelten Filtern entfernt wurden. Abbildung 9 zeigt die Glättungseffekte des Anwendens eines Henderson-Filters auf eine Serie: Abbildung 9: 23-Term-Henderson-Filter - Wert der Nicht-Wohngebäude Zulassungen WIE MACHEN WIR MIT DEM ENDPUNKT-PROBLEM Der symmetrische Henderson-Filter kann nur auf Regionen angewendet werden Von Daten, die ausreichend weit von den Enden der Reihe entfernt sind. Zum Beispiel kann die Standard-13-Term Henderson nur auf monatliche Daten angewendet werden, die mindestens 6 Beobachtungen vom Anfang oder Ende der Daten sind. Dies liegt daran, dass die Filterglätte der Reihe, indem sie einen gewichteten Durchschnitt der 6 Begriffe auf beiden Seiten des Datenpunktes sowie den Punkt selbst. Wenn wir versuchen, es auf einen Punkt anzuwenden, der weniger als 6 Beobachtungen von dem Ende der Daten ist, dann sind nicht genügend Daten auf einer Seite des Punktes verfügbar, um den Durchschnitt zu berechnen. Um Trendschätzungen dieser Datenpunkte zu liefern, wird ein modifizierter oder asymmetrischer gleitender Durchschnitt verwendet. Die Berechnung von asymmetrischen Henderson-Filtern kann durch eine Anzahl verschiedener Methoden erzeugt werden, die ähnliche, aber nicht identische Ergebnisse liefern. Die vier Hauptmethoden sind die Musgrave-Methode, die Minimierung der Mittelwert-Revisionsmethode, die Methode der besten linearen unregelmäßigen Schätzungen (BLUE) und die Kenny - und Durbin-Methode. Shiskin et. Al (1967) die ursprünglichen asymmetrischen Gewichte für den Henderson-gleitenden Durchschnitt, die innerhalb der X11-Pakete verwendet werden. Für Informationen über die Ableitung der asymmetrischen Gewichte siehe Abschnitt 5.3 der Zeitreihen-Lehrveranstaltungen. Man betrachte eine Zeitreihe, bei der der letzte beobachtete Datenpunkt zum Zeitpunkt N auftritt. Dann kann ein 13-term-symmetrisches Henderson-Filter nicht auf Datenpunkte angewendet werden, die zu jedem Zeitpunkt nach und einschließlich Zeit N-5 gemessen werden. Für alle diese Punkte muss ein asymmetrischer Satz von Gewichten verwendet werden. Die folgende Tabelle gibt das asymmetrische Gewichtungsmuster für einen normalen 13-Term-Henderson-gleitenden Durchschnitt. Die asymmetrischen 13-term-Henderson-Filter entfernen oder dämpfen nicht dieselben Zyklen wie der symmetrische 13-Term-Henderson-Filter. Tatsächlich verstärkt das asymmetrische Gewichtungsmuster, das verwendet wird, um den Trend bei der letzten Beobachtung zu schätzen, die Stärke von 12 Periodenzyklen. Auch asymmetrische Filter erzeugen eine zeitliche Phasenverschiebung. WAS SIND SEASONAL MOVING AVERAGES Fast alle Daten, die vom ABS untersucht werden, haben saisonale Eigenschaften. Da die Henderson-Bewegungsdurchschnitte, die verwendet wurden, um die Trendreihen abzuschätzen, nicht die Saisonalität beseitigen, müssen die Daten saisonbereinigt zuerst mit saisonalen Filtern eingestellt werden. Ein Saisonfilter hat Gewichte, die im gleichen Zeitraum über die Zeit angewendet werden. Ein Beispiel des Gewichtungsmusters für einen saisonalen Filter wäre: (1/3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1/3), wobei beispielsweise ein Gewicht von einem Drittel auf drei aufeinanderfolgende Januars angewendet wird. Innerhalb X11, eine Reihe von saisonalen Filter zur Auswahl stehen. Dies sind ein gewichteter 3-Term-gleitender Durchschnitt (ma) S 3x1. Gewichtet 5-term ma S 3x3. Gewichtet 7-term ma S 3x5. Und eine gewichtete 11-term ma S 3x9. Die Gewichtungsstruktur gewichteter gleitender Durchschnitte der Form, S nxm. Ist, daß ein einfacher Mittelwert von m Ausdrücken berechnet wird und dann ein gleitender Durchschnitt von n dieser Mittelwerte bestimmt wird. Dies bedeutet, dass nm-1 Ausdrücke verwendet werden, um jeden endgültigen geglätteten Wert zu berechnen. Zum Beispiel, um ein 11-Term S 3x9 zu berechnen. Ein Gewicht von 1/9 wird auf den gleichen Zeitraum in 9 aufeinander folgenden Jahren angewendet. Dann wird ein einfacher dreidimensionaler gleitender Durchschnitt über die gemittelten Werte angewendet: Dies ergibt ein endgültiges Gewichtungsmuster von (1/27, 2/27, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 1/9, 2/27, 1/27). Die Verstärkungsfunktion für einen 11-Jahres-Saisonfilter, S 3x9. Sieht wie folgt aus: Abbildung 10: Verstärkungsfunktion für 11 Term (S 3x9) Saisonfilter Die Anwendung eines saisonalen Filters auf Daten erzeugt eine Schätzung der saisonalen Komponente der Zeitreihe, da sie die Stärke der saisonalen Oberwellen und Dämpfungszyklen von nicht - Saisonale Längen. Asymmetrische saisonale Filter werden an den Enden der Serie verwendet. Die asymmetrischen Gewichte für jeden der in X11 verwendeten Saisonfilter finden Sie in Abschnitt 5.4 der Zeitreihen-Kursnotizen. WARUM SIND TREND ESTIMATES REVISED Am aktuellen Ende einer Zeitreihe ist es nicht möglich, symmetrische Filter zu verwenden, um den Trend aufgrund des Endpunktproblems abzuschätzen. Stattdessen werden asymmetrische Filter verwendet, um vorläufige Trendschätzungen zu erzeugen. Wenn jedoch mehr Daten verfügbar sind, ist es möglich, den Trend unter Verwendung von symmetrischen Filtern neu zu berechnen und die anfänglichen Schätzungen zu verbessern. Dies wird als Trend-Revision bezeichnet. WIE VIELE DATEN ERFORDERLICH WERDEN KÖNNEN, DASS ANNEHMBARE SAISONAL EINSTELLTE SCHÄTZUNGEN ERGEBEN WERDEN Wenn eine Zeitreihe eine relativ stabile Saisonalität aufweist und nicht von der unregelmäßigen Komponente dominiert wird, dann können 5 Jahre Daten als akzeptable Länge betrachtet werden, um saisonbereinigte Schätzungen abzuleiten. Für eine Serie, die eine besonders starke und stabile Saisonalität aufweist, kann eine grobe Anpassung mit 3-jährigen Daten vorgenommen werden. Es ist in der Regel vorzuziehen, mindestens 7 Jahre Daten für eine normale Zeitreihe zu haben, um saisonale Muster, Handelstage und bewegte Urlaubseffekte, Trend - und Saisonbrüche sowie Ausreißer präzise zu identifizieren. ERWEITERTE WIE KÖNNEN DIE ZWEI SEASONALEN EINSTELLUNGSPHILOSOPHIEN VERGLEICHEN Modellbasierte Ansätze erlauben die stochastischen Eigenschaften (Zufälligkeit) der zu analysierenden Reihe, in dem Sinne, dass sie die Filtergewichte aufgrund der Art der Serie maßschneidern. Die Fähigkeit des Modells8217, das Verhalten der Reihe genau zu beschreiben, kann ausgewertet werden, und es werden statistische Schlussfolgerungen für die Schätzungen auf der Grundlage der Annahme zur Verfügung gestellt, dass die unregelmäßige Komponente weißes Rauschen ist. Filterbasierte Methoden sind weniger abhängig von den stochastischen Eigenschaften der Zeitreihen. Es ist die Zeitreihe analyst8217s Verantwortung, um die am besten geeignete Filter aus einer begrenzten Sammlung für eine bestimmte Serie zu wählen. Es ist nicht möglich, die Angemessenheit des impliziten Modells rigoros zu überprüfen und genaue Präzisions - und statistische Schlußfolgerungen sind nicht verfügbar. Daher kann ein Vertrauensintervall nicht um die Schätzung herum aufgebaut werden. Die folgenden Diagramme vergleichen das Vorhandensein jeder der Modellkomponenten bei den saisonalen Frequenzen für die beiden saisonalen Anpassungsphilosophien. Die x-Achse ist die Periodenlänge des Zyklus und die y-Achse die Stärke der Zyklen, die jede Komponente umfassen: Abbildung 11: Vergleich der beiden saisonalen Anpassungsphilosophien Filterbasierte Methoden gehen davon aus, dass jede Komponente nur bestimmte Zykluslängen aufweist. Die längeren Zyklen bilden den Trend, die saisonale Komponente liegt bei saisonalen Frequenzen vor und die unregelmäßige Komponente wird als Zyklen beliebiger anderer Länge definiert. Unter einer modellbasierten Philosophie sind der Trend, die saisonale und die unregelmäßige Komponente bei allen Zykluslängen vorhanden. Die unregelmäßige Komponente ist von konstanter Festigkeit, die saisonalen Komponentenspitzen bei saisonalen Frequenzen und die Trendkomponente am stärksten in den längeren Zyklen. Diese Seite wurde am 14. November 2005, zuletzt aktualisiert am 25. Juli 2008 veröffentlicht
Comments
Post a Comment